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Abstract

The objective of this paper is to demonstrate the feasibility of a
Nonlinear Generalized Predictive Control algorithm by showing
real-time adaptive control on a plant with relatively fast time-
constants. Generalized Predictive Control has classically been
used in process control where linear control laws were formulated
for plants with relatively slow time-constants.  The plant of
interest for this paper is a magnetic levitation device that is
nonlinear and open-loop unstable.  In this application, the
reference model of the plant is a neural network that has an
embedded nominal linear model in the network weights.  The
control based on the linear model provides initial stability at the
beginning of network training.  In using a neural network the
control laws are nonlinear and online adaptation of the model is
possible to capture unmodeled or time-varying dynamics.
Newton-Raphson is the minimization algorithm. Newton-Raphson
requires the calculation of the Hessian, but even with this
computational expense the low iteration rate make this a viable
algorithm for real-time control.

1. Introduction

Generalized Predictive Control (GPC) belongs to the class of
Model-Based Predictive Control (MPC) techniques and was first
introduced by Clarke and his co-workers in 1987 [1,2,3].  Linear
model predictive control has a long reputation as a powerful
control tool in industrial control processes [4,5,6].  However
nonlinear model predictive control is still viewed as an academic
tool mainly because of the difficulties associated with reliable
construction of a nonlinear model [7].

In the predictive control scheme the model is used to predict the
future behavior of the system due to both known and unknown
input effects.  The accuracy of the model prediction directly
determines the quality and effectiveness of the control law and is
the primary consideration during implementation.  The
construction of the model can be either derived from fundamental
principles, based on empirical data, or, as in this paper, a
combination of the two.  A detailed discussion about the modeling
and identification as it applies to nonlinear model predictive
control can be found in [7].

A nonlinear model that is constructed from fundamental principals
could be globally valid over the entire input space depending on
the assumptions that are made.  The derivation can be extremely
rigorous and often leads to very high order models, which can
introduce complications for real-time computation.  Empirical
modeling is the process of transforming available input output data
into meaningful input output relations.  The main limitation of a
model based on observations is that the prediction capability is
only valid for the region spanned by the data so nothing can be
said about the accuracy of the predictions based on extrapolations.

The magnetic levitation (MAGLEV) system presents significant
challenges for neural network modeling and predictive control.
The challenge for the neural network model is online learning for
the MAGLEV system.  The challenge for the controller is to
compute real-time control laws for the MAGLEV system that has
dynamics that are considered to be relatively fast, especially for a

MBC scheme.  In this paper the neural network model is
initialized with a nominal linear model.  The control based on the
linear model provides initial stability at the beginning of network
training.  The neural network is then allowed to learn the
unmodeled dynamics of the nonlinear plant thus combining
fundamental and empirical modeling.  This paper also
demonstrates the feasibility of this NGPC implementation by
establishing real-time control at 500 Hertz while adapting the
neural network model online.  All results are using a single-input
single-output system.

In the next section the Experimental Setup will be described
followed by discussions of the Neural Generalized Predictive
Control, Forming the MAGLEV Model (Fundamental Principles),
Neural Network Model, Real-time Adaptive Control, and
Conclusions and Recommendations.

2. Experimental Setup

The plant to be controlled is a magnetic levitation or MAGLEV
device.  Magnetic levitation is a means of suspending an object in
space by controlling the magnetic force produced by current
flowing through a magnetic coil.  The MAGLEV device used for
this work has two coils that are positioned side by side to suspend
two one-inch metal balls in the air by the electromagnetic force
due to the DC magnet above it.  This device is capable of two
degrees-of-freedom (DOF), vertical translation and rotation [8].
The MAGLEV device can be used as a 1DOF single-input single-
output (SISO) system that commands only vertical translation of a
single metal ball or a 2DOF multi-input multi-output (MIMO)
system that also produces rotation through two separate vertical
translations of two metal balls connected by a nonferrous rod.
This paper presents results for the SISO 1DOF MAGLEV device
only.

The MAGLEV device is comprised of two DC magnets, a current
drive system, two light sources, and two photosensors.  Each of
the DC magnets is made of 3800 turns of gage-22 magnet wire
wrapped about a one-inch diameter low carbon steel core that is
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4.5 inches in length.  The current drive system includes two ± 45-
volt power supplies and two power op-amps to regulate the
voltage across each coil. Incandescent lights pass light though
convex optical lenses to cast a shadow from a suspended metal
ball on to arrayed infrared photosensors.  Each photosensor array
measures positions from 1 to 20 millimeters from the bottom of
the core.  Figure 1 depicts the MAGLEV device and the block
diagram indicating the real-time control system.  The MAGLEV
device and real-time controller together will be referred to as the
MAGLEV system.

A voltage signal measuring the position of a metal ball is passed
through analog filters (a RC network with 100 Hz roll-off).  This
sensor measurement is used for feedback control.  The analog
signal is then digitally sampled at 500 Hz and converted into a
position representation, in meters, that is sent to the NGPC
algorithm. The NGPC algorithm calculates the next current
command, in amps, that will place the metal ball at some specified
location.  The current command is then converted into an analog
voltage signal and sent through a coil drive circuit to a coil.

The NGPC algorithm is implemented in C-code on a Pentium II
400 MHz PC running Windows 95.  Data acquisition is performed
with a National Instruments E-Series multifunction I/O card.  The
interface between the control algorithm and the data collection is
done using the NI-DAQ library provided with the acquisition card.

3. Neural Generalized Predictive Control

A complete derivation of the NGPC algorithm for a general SISO
system is developed in [10].  A summary is presented herein.

The block diagram of the Neural Generalized Predictive Control
system is shown in Figure 2.  It consists of four components: the
MAGLEV device, a neural network model for prediction, a
tracking signal that specifies the desired position of the suspended
metal ball, and the Cost Function Minimization (CFM) algorithm
that calculates the current command needed for the magnetic coil
to produce the desired position.
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Figure 2. Block Diagram of the NGPC System and Algorithm

The NGPC algorithm operates in two modes, prediction and
control.  Prediction occurs between samples by setting a double-
pole/double-throw switch, S, to the neural network model.  The
NGPC algorithm utilizes the model to predict over some finite
horizon, the response of the plant to the inputs calculated by the
CFM algorithm.  The CFM algorithm minimizes a user specified
cost function to calculate the next control input.  The NGPC
system is set back to a mode of control before the next sample
time when the switch is set back to the MAGLEV device.  At this
time the control input that minimizes the cost function over the
entire horizon is passed to the MAGLEV as the current command,
u(n).  The algorithm used to accomplish this is outlined below.

The main steps of the NGPC algorithm are:

1) Starting with the previously calculated control input, u(n),
predict the performance of the plant for the specified horizon
using the model  The value of the horizon is determined
through a priori tuning.

2) Calculate a new control input that minimizes the cost
function,

3) Repeat steps 1 and 2 until desired minimization is achieved,
4) Send the “best” control input to the maglev as the new u(n),
5) Repeat for each time step.

The cost function used for position control of the MAGLEV
system, Equation (1) and Equation (2), has three terms.  The first
term represents the sum of the mean square error between the
desired output and the output of the neural network model.  The
neural network model serves to predict the plant outputs from N1
to N2 future time steps.  The second term is the weighted square of
the control increments.  The weighting factor, λu, acts to smooth
the control inputs.  The calculated inputs for the plant predictions
form the control increments.  They are calculated for Nu future
time steps.  The only constraint on the values of the horizons is
that Nu and N1 be less than or equal to N2.
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where
N1 is the minimum-costing horizon,
N2 is the maximum-costing horizon,
Nu is the control horizon,
ym is the desired tracking trajectory,
yn is the predicted output of the model,

λu is the control input weighting factor,
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The third summation of J, Equation (2), defines constraints placed
on the control input over a horizon of Nu.  The constraint function
g(u), is plotted in Figure 3.  The first two terms of g(u) form the
two sides of the function while the third part insures that the
minimum of the function is zero.

The sharpness, s, controls the shape of the constraint function
while the sides are bounded by upper and lower, the input
constraint.  The smaller the value of s, the sharper the corners get.
In practice s is set to a very small number, for example 10-20.
From both the equation and Figure 3 it is easily seen that as the
control input, u, approaches either the upper or lower bound, the
value of the input constraint function approaches infinity which
places a high cost on the minimization of this term.  If the
minimization produces either u ≤ lower or u ≥ upper then u is set
to u + ε or u - ε respectively.  The value of ε is set to 10-6 [9].
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Figure 3.  Plot of Input Constraint Function

Currently, there is no systematic way to determine the values for
the four tuning parameters N1, N2, Nu, and λu, for a nonlinear
system.  For a linear system the necessary condition to achieve
stability is Nu equal to the order of the system while N2 is used to
tune for performance. The value for λu should approach zero.
Dead time in the system is accounted for with the value of N1.

The CFM algorithm used to minimize the cost function is the
Newton-Raphson iterative algorithm.  Newton-Raphson is a
quadratically converging algorithm that requires the calculation of
the Jacobian and the Hessian.  Although the Newton-Raphson
algorithm can be computationally expensive, the low number of
iterations needed for convergence makes it a feasible algorithm.
The computational issues of Newton-Raphson are addressed
in [10].

4. Forming the MAGLEV Model (Fundamental Principles)

The MAGLEV device is open-loop unstable, which presents the
challenge of maintaining initial stability of the suspended object
while the weights of the neural network are adjusted to “learn” or
model the dynamics of this plant.  This problem is handled by
incorporating a nominal linear model into some of the weights of
the neural network while other weights are allowed to learn
unmodeled or time varying dynamics of the open-loop system [9].

Embedding a nominal linear model into the neural network has
two key advantages.  First, for many open-loop unstable systems,
it is often infeasible to let the plant go unstable the number of
times it would take the neural network to minimally learn the
dynamics enough to stabilize the plant.  This method could cause
the plant to be damaged or destroyed.  Also, incorporating
available information about a plant can reduce the training time
for the neural network.

This section will be used to develop a nominal linear model of the
MAGLEV device from the nonlinear equations of motion.  The
development of this model leaves many of the plant effects
unmodeled to demonstrate the ease and feasibility of combining a
nominal linear model with the capability of a neural networks to
model unmodeled dynamics including nonlinearities.  The manner
in which the linear equations are embedded into a neural network
will be described subsequently.

A metal ball of mass, m, is placed underneath the electromagnet at
a distance, y.  The current, i, flowing into the electromagnetic coil
will generate electromagnetic force, f, to attract the metal ball.
The net force between the gravitational force and the
electromagnetic force will cause the metal ball to move up or
down.  The metal ball is kept in a dynamic balance around an

operating point.  Newton's Second Law of motion can be applied
in the vertical direction to obtain
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Where f(i,y) is the electromagnetic force on the metal ball due to
the electromagnet.  The model of this force was determined
through experimental calibration.  For small air gap devices such
as the MAGLEV, it has been experimentally shown that the
magnetic field density remains uniform throughout the gap, and
that the force experienced due to the electromagnet is of the
form [11]
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It has been empirically observed that p(y) can be modeled using a
linear representation of the form a + by, where a and b are
constants and y is the vertical distance from the bottom of the coil.
Substituting Equation (4) into Equation (3) yields
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The MAGLEV device is inherently nonlinear due to the inverse
square law that reduces the electromagnetic force taken to suspend
the metal ball further from the coil.  The linear model is generated
by linearizing Equation (5) about a nominal operating point,
(y0,i0), to obtain
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Taking the Laplace transform of Equation (6) and substitution of
the constants, which are found in Table 1, produces the transfer
function
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The open-loop instability is apparent by the right half plane pole
of Equation (7).

Table 1. Definition of Constants
k
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a 0.2042
b 72.988
m 0.0682 kg
g 9.81m/s2

b0 0
b1 -0.5138x10-4

b2 -0.5138x10-4

a1 2.0061
a2 -1
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This continuous-time model is discretized at a sampling rate of
500 Hz using a zero-order hold approximation yielding the
difference equation

)y(n-a)y(n-)i(n-)i(n-bniy(n) 21 a2b 1)(b 21210 ++++= , (8)

where the values of the coefficients are given in Table 1.

5. Neural Network Model

The neural network architecture that is used for the MAGLEV
model is a multi-layer feedforward network (MLFN) with tapped-
time delays.  The network structure shown in Figure 4 depicts the
SISO structure with the linear model embedded into the weights.
The current, i, is the input to the MAGLEV system and vertical
position, y, is the output.  The inputs to the network are current ,
past values of the current, and the past position measurements of
the MAGLEV.  The network has a single hidden layer with
multiple hidden layer nodes and a single output node.  The
activation function for the output node is linear with a slope of one
and the activation functions for the hidden layer nodes is either
linear if the node is associated with the linear portion of the model
or the hyperbolic tangent.  The linear hidden layer node also has
the biases set to zero.
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Figure 4. Neural Network Structure for Embedding Linear Model

To embed the linear model into the network, the weights between
the input layer and the linear hidden layer node correspond to the
coefficients of the linear ARMA model in Equation (8).  The
weight from this hidden node to the output node is set to one.  The
remaining weights going to the nonlinear hidden layer nodes are
randomly initialized.  The weights coming from the nonlinear
nodes to the output node is initially set to zero to prohibit the
contribution of the nonlinear portion to the model output until the
system is stabilized.  Once stability is attained, the training
algorithm is turned on until acceptable model accuracy is
achieved.  The weights associated with the linear model remain
fixed throughout training.  The backpropagation-training
algorithm was used where the weights were updated at each
sample.  For more information on using neural networks refer to
[12, 13, 14].

Training for the neural network works best if the inputs and output
are scaled around ±1.  The current ranges between 0.3 to 1 amp,

which is sufficient for learning.  The output range of interest is
±0.004m, which is too small for effective training.  Consequently,
the output of the network was scaled by 0.004.  The feedback
signal, y(n-1) or yn(n-1), is scaled up by 1/0.004 for the same
reason. The embedded linear model is made equivalent to the
scaled neural network by scaling each of the input coefficients of
Equation (8) by 1/0.004.  The scaling on the b terms of the ARMA
model is not reflected in Figure 4.

For the experiment the network used 3 nonlinear hidden layer
nodes in addition to the one linear node associated with the linear
model.  Four additional time-delays were also added to the input
and feedback nodes.  The learning gain for the neural network
was 0.01.

6. Real-time Adaptive Control Results

The position of the metal ball is controlled to track a series of
filtered pulses of increasing amplitude about the linearized
operating point of 10mm.  The maximum distance commanded is
± 4mm.  This pulse train is continuously repeated during the
experiment.  The ball is initially placed under the coil and after
some period of time, online adaption of the neural network
weights is subsequently enabled.

Tuning the controller was accomplished by first tuning the
parameters in simulation.  This initially gave the set of tuning
parameters N1 = 1, N2 = 7, Nu = 2, and λ = 0.00001.  Starting with
these parameters the hardware was retuned to stable operation
with N1 = 1, N2 = 15, Nu = 2, and λ = 0.625.  The change in N2 is
expected by virtue of going from a simulation to hardware, but the
difference of the λ term is due to the network scaling.  The value
for λ changed from 0.00001 to 0.00001(1/0.004)2, or 0.625.

Figure 5 shows the tracking performance of the metal ball relative
to the pulse train.  The data is displayed by overlaying sections of
the pulse train during different time periods in the experiment.
The four traces represent the desired tracking reference trajectory,
the performance of NGPC using only the nominal linear model,
and the performance of NGPC after 20 seconds of training and 60
seconds of training.  As the network training continued, a
reduction in tracking error due to the decrease in error between the
maglev device and the neural network model can be seen.
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A running root mean square (RMS) error between ym(n) and y(n),
tracking error, over the entire experiment of 600 seconds is shown
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in Figure 6. Shortly after network training is enabled at
60 seconds, a significant reduction in the RMS error occurred.
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Both sets of results demonstrate the significant performance gain
obtained of using the nonlinear neural network to adapt the
reference model of the plant.

7. Conclusions and Recommendations

This paper has demonstrated that the Neural Generalized
Predictive Control algorithm is practicable for some SISO
applications requiring high sampling rates and real-time
computations.  The NGPC algorithm has subsequently been
implemented for MIMO systems.  It is currently being tested for
the 2DOF MAGLEV system and on a F-15 Active simulator for
6DOF control.

The paper also shows that embedding a nominal linear model into
the neural network is a suitable way to solve the problem of
training on an open-loop unstable plant.  For highly nonlinear
plants or plants operating over a large set of conditions, a method
of breaking an input space into multiple linear regions is
sometimes employed.  The method of modeling demonstrated in
this paper could be applied using multiple neural networks.  This
could lead to a reduction in the number of overall regions modeled
due to the nonlinear modeling capability of neural networks.  A
gating neural network can then used to blend the output of the
models to obtain the most accurate representation of the plant at
that condition.  This technique using NGPC is being studied.

Additional issues that are being studied are concerned with
stability properties of the closed-loop system during network
adaption and analysis of controller robustness to model
uncertainties.
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